dask_ml.naive_bayes.GaussianNB
dask_ml.naive_bayes.GaussianNB¶
- class dask_ml.naive_bayes.GaussianNB(priors=None, classes=None)¶
- Fit a naive bayes model with a Gaussian likelihood - Examples - >>> from dask_ml import datasets >>> from dask_ml.naive_bayes import GaussianNB >>> X, y = datasets.make_classification(chunks=50) >>> gnb = GaussianNB() >>> gnb.fit(X, y) - Methods - get_metadata_routing()- Get metadata routing of this object. - get_params([deep])- Get parameters for this estimator. - predict(X)- Perform classification on an array of test vectors X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] Predicted target values for X. - predict_log_proba(X)- Return log-probability estimates for the test vector X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array-like, shape = [n_samples, n_classes] Returns the log-probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute classes_. - predict_proba(X)- Return probability estimates for the test vector X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array-like, shape = [n_samples, n_classes] Returns the probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute classes_. - set_params(**params)- Set the parameters of this estimator. - fit - __init__(priors=None, classes=None)¶