dask_ml.datasets.make_blobs
dask_ml.datasets.make_blobs¶
- dask_ml.datasets.make_blobs(n_samples=100, n_features=2, centers=None, cluster_std=1.0, center_box=(- 10.0, 10.0), shuffle=True, random_state=None, chunks=None)¶
Generate isotropic Gaussian blobs for clustering.
This can be used to generate very large Dask arrays on a cluster of machines. When using Dask in distributed mode, the client machine only needs to allocate a single block’s worth of data.
- Parameters
- n_samplesint or array-like, optional (default=100)
If int, it is the total number of points equally divided among clusters. If array-like, each element of the sequence indicates the number of samples per cluster.
- n_featuresint, optional (default=2)
The number of features for each sample.
- centersint or array of shape [n_centers, n_features], optional
(default=None) The number of centers to generate, or the fixed center locations. If n_samples is an int and centers is None, 3 centers are generated. If n_samples is array-like, centers must be either None or an array of length equal to the length of n_samples.
- cluster_stdfloat or sequence of floats, optional (default=1.0)
The standard deviation of the clusters.
- center_boxpair of floats (min, max), optional (default=(-10.0, 10.0))
The bounding box for each cluster center when centers are generated at random.
- shuffleboolean, optional (default=True)
Shuffle the samples.
- random_stateint, RandomState instance or None (default)
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
- chunksint, tuple
How to chunk the array. Must be one of the following forms: - A blocksize like 1000. - A blockshape like (1000, 1000). - Explicit sizes of all blocks along all dimensions like
((1000, 1000, 500), (400, 400)).
- Returns
- Xarray of shape [n_samples, n_features]
The generated samples.
- yarray of shape [n_samples]
The integer labels for cluster membership of each sample.
See also
make_classification
a more intricate variant
Examples
>>> from dask_ml.datasets import make_blobs >>> X, y = make_blobs(n_samples=100000, chunks=10000) >>> X dask.array<..., shape=(100000, 2), dtype=float64, chunksize=(10000, 2)> >>> y dask.array<concatenate, shape=(100000,), dtype=int64, chunksize=(10000,)>