dask_ml.metrics.accuracy_score
dask_ml.metrics.accuracy_score¶
- dask_ml.metrics.accuracy_score(y_true: dask_ml._typing.ArrayLike, y_pred: dask_ml._typing.ArrayLike, normalize: bool = True, sample_weight: Optional[dask_ml._typing.ArrayLike] = None, compute: bool = True) dask_ml._typing.ArrayLike ¶
Accuracy classification score.
In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must exactly match the corresponding set of labels in y_true.
Read more in the User Guide.
- Parameters
- y_true1d array-like, or label indicator array
Ground truth (correct) labels.
- y_pred1d array-like, or label indicator array
Predicted labels, as returned by a classifier.
- normalizebool, optional (default=True)
If
False
, return the number of correctly classified samples. Otherwise, return the fraction of correctly classified samples.- sample_weight1d array-like, optional
Sample weights.
New in version 0.7.0.
- Returns
- scorescalar dask Array
If
normalize == True
, return the correctly classified samples (float), else it returns the number of correctly classified samples (int).The best performance is 1 with
normalize == True
and the number of samples withnormalize == False
.
Notes
In binary and multiclass classification, this function is equal to the
jaccard_similarity_score
function.Examples
>>> import dask.array as da >>> import numpy as np >>> from dask_ml.metrics import accuracy_score >>> y_pred = da.from_array(np.array([0, 2, 1, 3]), chunks=2) >>> y_true = da.from_array(np.array([0, 1, 2, 3]), chunks=2) >>> accuracy_score(y_true, y_pred) dask.array<mean_agg-aggregate, shape=(), dtype=float64, chunksize=()> >>> _.compute() 0.5 >>> accuracy_score(y_true, y_pred, normalize=False).compute() 2
In the multilabel case with binary label indicators:
>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5