dask_ml.xgboost.XGBRegressor
dask_ml.xgboost.XGBRegressor¶
- class dask_ml.xgboost.XGBRegressor(*, objective: Optional[Union[str, xgboost.sklearn._SklObjWProto, Callable[[Any, Any], Tuple[numpy.ndarray, numpy.ndarray]]]] = 'reg:squarederror', **kwargs: Any)¶
- Attributes
best_iterationThe best iteration obtained by early stopping.
best_scoreThe best score obtained by early stopping.
coef_Coefficients property
feature_importances_Feature importances property, return depends on importance_type parameter.
feature_names_in_Names of features seen during
fit().intercept_Intercept (bias) property
n_features_in_Number of features seen during
fit().
Methods
apply(X[, iteration_range])Return the predicted leaf every tree for each sample.
evals_result()Return the evaluation results.
fit(X[, y, eval_set, sample_weight, ...])Fit the gradient boosting model
get_booster()Get the underlying xgboost Booster of this model.
get_metadata_routing()Get metadata routing of this object.
get_num_boosting_rounds()Gets the number of xgboost boosting rounds.
get_params([deep])Get parameters.
get_xgb_params()Get xgboost specific parameters.
load_model(fname)Load the model from a file or a bytearray.
predict(X)Predict with X.
save_model(fname)Save the model to a file.
score(X, y[, sample_weight])Return coefficient of determination on test data.
set_fit_request(*[, early_stopping_rounds, ...])Configure whether metadata should be requested to be passed to the
fitmethod.set_params(**params)Set the parameters of this estimator.
set_predict_request(*[, base_margin, ...])Configure whether metadata should be requested to be passed to the
predictmethod.set_score_request(*[, sample_weight])Configure whether metadata should be requested to be passed to the
scoremethod.