dask_ml.preprocessing.Categorizer
dask_ml.preprocessing
.Categorizer¶
- class dask_ml.preprocessing.Categorizer(categories: Optional[dict] = None, columns: pandas.core.indexes.base.Index = None)¶
Transform columns of a DataFrame to categorical dtype.
This is a useful pre-processing step for dummy, one-hot, or categorical encoding.
- Parameters
- categoriesmapping, optional
A dictionary mapping column name to instances of
pandas.api.types.CategoricalDtype
. Alternatively, a mapping of column name to(categories, ordered)
tuples.- columnssequence, optional
A sequence of column names to limit the categorization to. This argument is ignored when
categories
is specified.
- Attributes
- columns_pandas.Index
The columns that were categorized. Useful when
categories
is None, and we detect the categorical and object columns- categories_dict
A dictionary mapping column names to dtypes. For pandas>=0.21.0, the values are instances of
pandas.api.types.CategoricalDtype
. For older pandas, the values are tuples of(categories, ordered)
.
Notes
This transformer only applies to
dask.DataFrame
andpandas.DataFrame
. By default, all object-type columns are converted to categoricals. The set of categories will be the values present in the column and the categoricals will be unordered. Passdtypes
to control this behavior.All other columns are included in the transformed output untouched.
For
dask.DataFrame
, any unknown categoricals will become known.Examples
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": ['a', 'a', 'b']}) >>> ce = Categorizer() >>> ce.fit_transform(df).dtypes A int64 B category dtype: object
>>> ce.categories_ {'B': CategoricalDtype(categories=['a', 'b'], ordered=False)}
Using CategoricalDtypes for specifying the categories:
>>> from pandas.api.types import CategoricalDtype >>> ce = Categorizer(categories={"B": CategoricalDtype(['a', 'b', 'c'])}) >>> ce.fit_transform(df).B.dtype CategoricalDtype(categories=['a', 'b', 'c'], ordered=False)
Methods
fit
(X[, y])Find the categorical columns.
fit_transform
(X[, y])Fit to data, then transform it.
get_metadata_routing
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
transform
(X[, y])Transform the columns in
X
according toself.categories_
.