dask_ml.xgboost.XGBClassifier
dask_ml.xgboost.XGBClassifier¶
- class dask_ml.xgboost.XGBClassifier(*, objective: Optional[Union[str, xgboost.sklearn._SklObjWProto, Callable[[Any, Any], Tuple[numpy.ndarray, numpy.ndarray]]]] = 'binary:logistic', **kwargs: Any)¶
- Attributes
best_iterationThe best iteration obtained by early stopping.
best_scoreThe best score obtained by early stopping.
- classes_
coef_Coefficients property
feature_importances_Feature importances property, return depends on importance_type parameter.
feature_names_in_Names of features seen during
fit().intercept_Intercept (bias) property
n_features_in_Number of features seen during
fit().
Methods
apply(X[, iteration_range])Return the predicted leaf every tree for each sample.
evals_result()Return the evaluation results.
fit(X[, y, classes, eval_set, ...])Fit a gradient boosting classifier
get_booster()Get the underlying xgboost Booster of this model.
get_metadata_routing()Get metadata routing of this object.
get_num_boosting_rounds()Gets the number of xgboost boosting rounds.
get_params([deep])Get parameters.
get_xgb_params()Get xgboost specific parameters.
load_model(fname)Load the model from a file or a bytearray.
predict(X)Predict with X.
predict_proba(data[, ntree_limit])Predict the probability of each X example being of a given class.
save_model(fname)Save the model to a file.
score(X, y[, sample_weight])Return accuracy on provided data and labels.
set_fit_request(*[, classes, ...])Configure whether metadata should be requested to be passed to the
fitmethod.set_params(**params)Set the parameters of this estimator.
set_predict_proba_request(*[, data, ntree_limit])Configure whether metadata should be requested to be passed to the
predict_probamethod.set_predict_request(*[, base_margin, ...])Configure whether metadata should be requested to be passed to the
predictmethod.set_score_request(*[, sample_weight])Configure whether metadata should be requested to be passed to the
scoremethod.