dask_ml.feature_extraction.text.FeatureHasher
dask_ml.feature_extraction.text
.FeatureHasher¶
- class dask_ml.feature_extraction.text.FeatureHasher(n_features=1048576, *, input_type='dict', dtype=<class 'numpy.float64'>, alternate_sign=True)¶
Implements feature hashing, aka the hashing trick.
This class turns sequences of symbolic feature names (strings) into scipy.sparse matrices, using a hash function to compute the matrix column corresponding to a name. The hash function employed is the signed 32-bit version of Murmurhash3.
Feature names of type byte string are used as-is. Unicode strings are converted to UTF-8 first, but no Unicode normalization is done. Feature values must be (finite) numbers.
This class is a low-memory alternative to DictVectorizer and CountVectorizer, intended for large-scale (online) learning and situations where memory is tight, e.g. when running prediction code on embedded devices.
For an efficiency comparison of the different feature extractors, see FeatureHasher and DictVectorizer Comparison.
Read more in the User Guide.
New in version 0.13.
- Parameters
- n_featuresint, default=2**20
The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners.
- input_typestr, default=’dict’
Choose a string from {‘dict’, ‘pair’, ‘string’}. Either “dict” (the default) to accept dictionaries over (feature_name, value); “pair” to accept pairs of (feature_name, value); or “string” to accept single strings. feature_name should be a string, while value should be a number. In the case of “string”, a value of 1 is implied. The feature_name is hashed to find the appropriate column for the feature. The value’s sign might be flipped in the output (but see non_negative, below).
- dtypenumpy dtype, default=np.float64
The type of feature values. Passed to scipy.sparse matrix constructors as the dtype argument. Do not set this to bool, np.boolean or any unsigned integer type.
- alternate_signbool, default=True
When True, an alternating sign is added to the features as to approximately conserve the inner product in the hashed space even for small n_features. This approach is similar to sparse random projection.
Changed in version 0.19:
alternate_sign
replaces the now deprecatednon_negative
parameter.
See also
DictVectorizer
Vectorizes string-valued features using a hash table.
sklearn.preprocessing.OneHotEncoder
Handles nominal/categorical features.
Notes
This estimator is stateless and does not need to be fitted. However, we recommend to call
fit_transform()
instead oftransform()
, as parameter validation is only performed infit()
.Examples
>>> from sklearn.feature_extraction import FeatureHasher >>> h = FeatureHasher(n_features=10) >>> D = [{'dog': 1, 'cat':2, 'elephant':4},{'dog': 2, 'run': 5}] >>> f = h.transform(D) >>> f.toarray() array([[ 0., 0., -4., -1., 0., 0., 0., 0., 0., 2.], [ 0., 0., 0., -2., -5., 0., 0., 0., 0., 0.]])
With input_type=”string”, the input must be an iterable over iterables of strings:
>>> h = FeatureHasher(n_features=8, input_type="string") >>> raw_X = [["dog", "cat", "snake"], ["snake", "dog"], ["cat", "bird"]] >>> f = h.transform(raw_X) >>> f.toarray() array([[ 0., 0., 0., -1., 0., -1., 0., 1.], [ 0., 0., 0., -1., 0., -1., 0., 0.], [ 0., -1., 0., 0., 0., 0., 0., 1.]])
Methods
fit
([X, y])Only validates estimator's parameters.
fit_transform
(X[, y])Fit to data, then transform it.
get_metadata_routing
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
set_transform_request
(*[, raw_X])Request metadata passed to the
transform
method.transform
- __init__(n_features=1048576, *, input_type='dict', dtype=<class 'numpy.float64'>, alternate_sign=True)¶