dask_ml.model_selection.IncrementalSearchCV
dask_ml.model_selection
.IncrementalSearchCV¶
- class dask_ml.model_selection.IncrementalSearchCV(estimator, parameters, n_initial_parameters=10, decay_rate=<object object>, test_size=None, patience=False, tol=0.001, fits_per_score=1, max_iter=100, random_state=None, scoring=None, verbose=False, prefix='', scores_per_fit=None, predict_meta=None, predict_proba_meta=None, transform_meta=None)¶
Incrementally search for hyper-parameters on models that support partial_fit
This incremental hyper-parameter optimization class starts training the model on many hyper-parameters on a small amount of data, and then only continues training those models that seem to be performing well.
See the User Guide for more.
- Parameters
- estimatorestimator object.
A object of that type is instantiated for each initial hyperparameter combination. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a score` function, or
scoring
must be passed. The estimator must implementpartial_fit
,set_params
, and work well withclone
.- parametersdict
Dictionary with parameters names (string) as keys and distributions or lists of parameters to try. Distributions must provide a
rvs
method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly.- n_initial_parametersint, default=10
Number of parameter settings that are sampled. This trades off runtime vs quality of the solution.
Alternatively, you can set this to
"grid"
to do a full grid search.- decay_ratefloat, default 1.0
How quickly to decrease the number partial future fit calls.
Deprecated since version v1.4.0: This implementation of an adaptive algorithm that uses
decay_rate
has moved toInverseDecaySearchCV
.- patienceint, default False
If specified, training stops when the score does not increase by
tol
afterpatience
calls topartial_fit
. Off by default.- fits_per_scoreint, optional, default=1
If
patience
is used the maximum number ofpartial_fit
calls betweenscore
calls.- scores_per_fitint, default 1
If
patience
is used the maximum number ofpartial_fit
calls betweenscore
calls.Deprecated since version v1.4.0: Renamed to
fits_per_score
.- tolfloat, default 0.001
The required level of improvement to consider stopping training on that model. The most recent score must be at at most
tol
better than the all of the previouspatience
scores for that model. Increasingtol
will tend to reduce training time, at the cost of worse models.- max_iterint, default 100
Maximum number of partial fit calls per model.
- test_sizefloat
Fraction of the dataset to hold out for computing test scores. Defaults to the size of a single partition of the input training set
Note
The training dataset should fit in memory on a single machine. Adjust the
test_size
parameter as necessary to achieve this.- random_stateint, RandomState instance or None, optional, default: None
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
- scoringstring, callable, list/tuple, dict or None, default: None
A single string (see The scoring parameter: defining model evaluation rules) or a callable (see Defining your scoring strategy from metric functions) to evaluate the predictions on the test set.
For evaluating multiple metrics, either give a list of (unique) strings or a dict with names as keys and callables as values.
NOTE that when using custom scorers, each scorer should return a single value. Metric functions returning a list/array of values can be wrapped into multiple scorers that return one value each.
See Specifying multiple metrics for evaluation for an example.
If None, the estimator’s default scorer (if available) is used.
- verbosebool, float, int, optional, default: False
If False (default), don’t print logs (or pipe them to stdout). However, standard logging will still be used.
If True, print logs and use standard logging.
If float, print/log approximately
verbose
fraction of the time.- prefixstr, optional, default=””
While logging, add
prefix
to each message.- predict_meta: pd.Series, pd.DataFrame, np.array deafult: None(infer)
An empty
pd.Series
,pd.DataFrame
,np.array
that matches the output type of the estimatorspredict
call. This meta is necessary for for some estimators to work withdask.dataframe
anddask.array
- predict_proba_meta: pd.Series, pd.DataFrame, np.array deafult: None(infer)
An empty
pd.Series
,pd.DataFrame
,np.array
that matches the output type of the estimatorspredict_proba
call. This meta is necessary for for some estimators to work withdask.dataframe
anddask.array
- transform_meta: pd.Series, pd.DataFrame, np.array deafult: None(infer)
An empty
pd.Series
,pd.DataFrame
,np.array
that matches the output type of the estimatorstransform
call. This meta is necessary for for some estimators to work withdask.dataframe
anddask.array
- Attributes
- cv_results_dict of np.ndarrays
This dictionary has keys
mean_partial_fit_time
mean_score_time
std_partial_fit_time
std_score_time
test_score
rank_test_score
model_id
partial_fit_calls
params
param_{key}
, wherekey
is every key inparams
.
The values in the
test_score
key correspond to the last score a model received on the hold out dataset. The keymodel_id
corresponds withhistory_
. This dictionary can be imported into Pandas.- model_history_dict of lists of dict
A dictionary of each models history. This is a reorganization of
history_
: the same information is present but organized per model.This data has the structure
{model_id: hist}
wherehist
is a subset ofhistory_
andmodel_id
are model identifiers.- history_list of dicts
Information about each model after each
partial_fit
call. Each dict the keyspartial_fit_time
score_time
score
model_id
params
partial_fit_calls
elapsed_wall_time
The key
model_id
corresponds to themodel_id
incv_results_
. This list of dicts can be imported into Pandas.- best_estimator_BaseEstimator
The model with the highest validation score among all the models retained by the “inverse decay” algorithm.
- best_score_float
Score achieved by
best_estimator_
on the validation set after the final call topartial_fit
.- best_index_int
Index indicating which estimator in
cv_results_
corresponds to the highest score.- best_params_dict
Dictionary of best parameters found on the hold-out data.
- scorer_
The function used to score models, which has a call signature of
scorer_(estimator, X, y)
.- n_splits_int
Number of cross validation splits.
- multimetric_bool
Whether this cross validation search uses multiple metrics.
Examples
Connect to the client and create the data
>>> from dask.distributed import Client >>> client = Client() >>> import numpy as np >>> from dask_ml.datasets import make_classification >>> X, y = make_classification(n_samples=5000000, n_features=20, ... chunks=100000, random_state=0)
Our underlying estimator is an SGDClassifier. We specify a few parameters common to each clone of the estimator.
>>> from sklearn.linear_model import SGDClassifier >>> model = SGDClassifier(tol=1e-3, penalty='elasticnet', random_state=0)
The distribution of parameters we’ll sample from.
>>> params = {'alpha': np.logspace(-2, 1, num=1000), ... 'l1_ratio': np.linspace(0, 1, num=1000), ... 'average': [True, False]}
>>> search = IncrementalSearchCV(model, params, random_state=0) >>> search.fit(X, y, classes=[0, 1]) IncrementalSearchCV(...)
Alternatively you can provide keywords to start with more hyper-parameters, but stop those that don’t seem to improve with more data.
>>> search = IncrementalSearchCV(model, params, random_state=0, ... n_initial_parameters=1000, ... patience=20, max_iter=100)
Often, additional training leads to little or no gain in scores at the end of training. In these cases, stopping training is beneficial because there’s no gain from more training and less computation is required. Two parameters control detecting “little or no gain”:
patience
andtol
. Training continues if at least one score is more thantol
above the other scores in the most recentpatience
calls tomodel.partial_fit
.For example, setting
tol=0
andpatience=2
means training will stop after two consecutive calls tomodel.partial_fit
without improvement, or whenmax_iter
total calls tomodel.partial_fit
are reached.Methods
decision_function
(X)fit
(X[, y])Find the best parameters for a particular model.
get_metadata_routing
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
inverse_transform
(Xt)predict
(X)Predict for X.
predict_log_proba
(X)Log of probability estimates.
predict_proba
(X)Probability estimates.
score
(X[, y])Returns the score on the given data.
set_params
(**params)Set the parameters of this estimator.
set_score_request
(*[, compute])Request metadata passed to the
score
method.transform
(X)Transform block or partition-wise for dask inputs.
partial_fit
- __init__(estimator, parameters, n_initial_parameters=10, decay_rate=<object object>, test_size=None, patience=False, tol=0.001, fits_per_score=1, max_iter=100, random_state=None, scoring=None, verbose=False, prefix='', scores_per_fit=None, predict_meta=None, predict_proba_meta=None, transform_meta=None)¶